

Neuroimaging in psychiatry: Focus on auditory hallucinations

Kenneth Hugdahl

Department Biological and Medical Psychology

University of Bergen, Norway

and

Division of Psychiatry, Department of Radiology, Haukeland University Hospital,

Bergen

Schizophrenia

- Heterogenous disorder multitude of sub-classifications and symptoms
- Diagnosis is descriptive and functional
- Underlying mechanism(s) not known
- No biomarkers or predictive models identified
- Problem predicting treatment effects - leads to a "trial-anderror" approach

ERC Advanced Grant Project "Hearing Voices" - From cognition to brain systems

- Focus on the symptom phenotype rather than the diagnosis. phenotype, «Phenotype constraining approach»
- Auditory hallucinations are the most characteristic symptom in schizophrenia, it "defines" a psychosis

Three characteristic dimensions:

- Perceptual dimension ("hearing a voice")
- Cognitive dimension ("cannot control the voice")
- Emotional dimension ("the voice is evil")

- heterogeneity in a symptom can be quantified, heterogeneity in a diagnosis cannot
- easier to focus research questions and hypotheses
- easier to translate between levels of explanation
- (easier to follow the literature)

The content of hallucinations

Perceptual

- «The voices not only speak to the patient but they pass electricity through the body. Cognitive beat him, paralyze him, take his thoughts away... »
- Threats or curses form the main and most common content of the «voices».
- «Day and night they come from everywhere, from the walls, from above and below, from the cellar and the roof, from heaven and from hell, from near and far...»

Eugene Bleuler, Dementia Praecox, or The Group of Schizophrenia, Monograph 1911

Perceptual dimension - Auditory hallucinations would interfere with the processing of an external sound

Correlating dichotic listening performance and PANSS P3 symptom scores

...should be a negative correlation between REA and PANSS

N = 160, data from Norway, Turkey, USA

Hugdahl, Løberg, Kompus et al. *Schizophrenia Research* (2012)

Meta-analysis of difference in REA between Schizophrenia patients and Healthy controls 21 studies, N = 700 patients and 700 controls

Patients vs. Controls

Hallucinating patients. vs. Controls

Ocklenburg, Westerhausen, Hirnstein et al., JINS, 2013

Functional imaging data: State effects

Meta-analysis of PET and fMRIstudies

K. Kompus, R. Westerhausen, K. Hugdahl *Neuropsychologia* (2011)

"...we were fortunate to be able to study the interesting and rare case of a woman with schizophrenia who experienced continuous AVH..."

"AVHs were associated with increased metabolic activity in the left primary auditory cortex ..." (Bentaleb et al., 2002, Abstract, p. 110)

...but is this the same area(s) that are activated in healthy individuals in the presence of an external spech sound?

Neuronal activation in hallucinating patients in the *absence* of an external speech sound Neuronal activation in healthy subjects in the *presence* of an external speech sound

...that lead to a "paradoxical" finding - the activation is reduced or disappears...

Auditory cortex activation in the *absence* of a speech signal (state effect)

Auditory cortex activation in the *presence* of a speech signal (trait • effect)

N = 103

Kompus, Westerhausen, Hugdahl, Neuropsychologia, 2011

• The neurons seem to be "refractory" and the perceptual system is "shut down" during AHs...

"Hittlewinditions lowered the Nationality of state is attentional bias effect passion and the evolve which lafe the vertes the evolve which lafe the vertes the recognition of recoveries the recognition of the second second of the recoveries the recoveries the recoveries the recover

• In all instances, AHs *interfere* with processing of an external sound

...but do patients really have problems with auditory and speech percption?

- Pitch perception deficits for basic auditory stimuli, failure of MMN change detection (Javitt et al., 2000; Ahveninen et al., 2006; Fischer et al., 2011)
- Impaired recognition of familiar voices (Zang et al., 2008)
- Impaired recall of previously presented voices (Waters & Badcock, 2009)
- Impaired ability to analyze speaker identity. (Chabra et al., 2012)
- Hallucinating patients are impaired in voice identity recognition (Alba-Ferrara et al., 2012)
- Hallucinators performed worse than non-hallucinators and controls for pitch discrimination of unmodulated tones and auditory streaming (MacLachlan et al., 2013)

Hallucinating patients

Non-Hallucinating patients

Is there an underlying structural asymmetry that would strengthen the functional data?

"Severity of AVHs was significantly associated with GMV reductions in the left and marginally with the right STG, including Heschl's gyrus"

/Meta-analysis by Modinos, Costafreda, van Tol,.McGuire, Aleman, Allen., Cortex, 2013, Abstract/ see also van Tol et al., 2013

G. Neckelmann, K. Specht, L. Ersland, K. Hugdahl et al. *Int J Neuroscience*, 2006

The Model

Clinical implication

Is it possible to selectively train attention focus away from the "voices" and towards the outer world, and at the same time increase cognitive control and executive function?

In other words, **hyper**excitate the top-down system!

Hugdahl, Løberg, Nygård, Frontiers in Neuroscience, 2009

...if imaging data explains the cognitive data, what explains the imaging data? Levels of Explanation

Cultural/Social
Norms, beliefs, attitudes

Clinical

Symptoms/Syndromes/Diagnoses

• $\sqrt{\text{Cognitive}}$

Perception, Attention, Executive, Language

• $\sqrt{\mathbf{Brain}\,\mathbf{imaging}}$

Neuronal systems and networks

$\cdot \sqrt{\text{Cellular}}$

Synapses and neurotransmitters

• Molecular

Genes, DNA, proteins

AVHs seem to be excitatory phenomena, thus a first hint would be to search for an excitatory transmitter in the key regions in the brain

(Risperidone/Clozapine

example)

1. Cortical Glu is synthesized from astroglia Gln

2. Release of Glu is balanced by GABA release 3. Striatal DA release is

controlled by Glu/GABA

Thus, a first question is whether there is increased Glu levels in the hallucinating brain, and particularly in temporal (and frontal) areas?

MR Spectroscopy (MRS)

Hugdahl, Nygård, Løberg et al., in revision August 2014

How specific is the correlation with the AVH symptom and Glu across the range of PANSS symptoms?

Variable	GluTemporal lobe	Glu Frontal Iobe	
P1_DEL	0,455274	0,474314	
P2_CON	0,238132	0,291792	
P3_HAL	0,465845	0,640679	
P4_EXC	0,228148	0,213766	
P5_GRA	0,259896	0,397535	
N1_BLU	-0,340804	-0,048366	
N2_EMO	-0,031370	0,192913	
N3_RAP	-0, 1 01439	-0,012550	
N4_PAS	-0,218014	0,019875	
N5_ABS	0,212966	-0,046346	
N6_SPO	-0,334065	-0,158890	
G1_SOM	0,101679	0,076525	
G2_ANX	0,050093	0,344407	
G3_GUI	0,265660	0,129893	
G4_TEN	-0,082463	-0,103093	
G6_DEP	-0,248437	0,088020	
G7_MOT	-0,076469	-0,137117	
G9_THO	0,568660	0,538670	
G10_DIS	-0,100623	-0,135750	
G12_INS	0,422139	0,463303	
G13_VOL	0,209462	0,057769	
G16_AVO	-0,209722	0,244602	

Red correlations are significant at p < .05, Spearman's r

Emotional dimension - attempt at quantification

Use BAVQ scores to investigate if high PANSS score on P3 (AH) item goes together with negative or positive AH content (N = 54).

Is this specific for AH?

Variable	P3 HALLUCIN	POSTOT	N2 WITHDRAW	NEGTOT
1-PUNISH_M	0,274838	0,121820	0,123373	0,069036
2-HELP_B	0,058034	0,252693	0,008664	-0,038622
3-POWERFUL	0,414088	0,348763	0,156029	0,210688
4-PERSECUTE_M	0,277096	0,191334	0,151424	0,030268
5-PROTECT_B	0,139368	0,267693	-0,045175	-0,030294
6-TOKNOW	0,270248	0,077799	0,001390	-0,028161
7-EVIL_M	0,219607	0,104806	0,130189	0,162874
8-KEEPSANE_B	0,162179	0,225256	0,097013	0,017952
9-NOTWANTDO	0,397602	0,257474	0,115631	0,203970
10-HARMME_M	0,222105	0,088449	0,141370	0,102327
11-ABILITIES_B	0,148285	0,455472	-0,104422	-0,017671
12-CONTROL	0,248586	-0,054417	-0,000000	-0,029466
13-BADTHINGS_M	0,222683	-0,005041	0,228247	0,129434
14-GOALS_B	-0,011602	0,105479	-0,166058	-0,117758
15-KILLME	0,447455	0,471611	0,279768	0,238185
16-DESTROYME_M	0,319626	0,354744	0,163926	0,180273
17-GRATEFUL_B	0,125635	0,354186	-0,117614	-0,071674
18-RULESME	0,400083	0,298676	0,155235	0,197478
19-REASSURE_E	0,041169	0,066335	-0,095260	-0,214428
20-FRIGHTEN_R	0,172264	0,083696	-0,062911	-0,126874
21-HAPPY_E	0,128041	0,198385	-0,034174	-0,091409
22-FEELDOWN_R	0,132772	0,020760	-0,093022	-0,092998
23-FEELANGRY_R	0,275797	0,235114	-0,117864	-0,047925
24-FEELCALM_E	0,054394	0,298400	0,086643	0,011146
25-FEELANX_R	-0,066678	0,136742	-0,043273	-0,136234
26-FEELCONFID_E	0,037755	0,261319	0,262368	0,121993
27-LEAVEALONE_R	0,175265	0,146554	-0,089489	-0,202106
28-TAKEMINDOFF_R	-0,131640	-0,094491	0,001502	-0,049520
29-STOPIT R	0,002893	-0,064693	-0,021661	-0,184768
30-PREVENTTALK_R	0,052504	-0,093887	-0,058856	-0,066055
31-NOTOBEY R	0,036149	0,014499	0,209031	0,050628
32-WANTLISTEN E	0,047782	0,159368	-0,021194	-0,006672
33-WILLFOLLOW E	0,081756	0,129870	0,087621	0,145257
34-GETCONTACT E	0,182100	0,236586	0,306197	0,233023
35-SEEKADVICE E	0,043051	0,276203	0,148638	0,135893

Outstanding questions:

- Why are the "voices" predominantly negative, where does the emotional aspect come from?
- What happens in the brain the last seconds before a patients wxpreineces "hearing a voice", the last seconds before the "voices" goes away?
- What is it with "voices" that makes them appear both in clinical and non-clinical contexts, where is the "bridge"?
- Is there a genetic predisposition "deep down"?

The SFF/ERC AH Team

IBMP/Haukeland team

Rene Westerhausen, PhD, Senior Researcher Kristiina Kompus, PhD, Postdoc Marco Hirnstein, PhD, Postdoc Susanne Passow, PhD, Postdoc Merethe Nygård, PhD-student Liv E. Falkenberg, PhD-student Josef Bless, PhD-student Alex Craven, MS. Research technician, Maiken Brix, MD, Radiology Lars Ersland, PhD, MR-Physics Galyna Kovalchuk, MS, Research technician

Sandviken-team

Erik Johnsen, M.D., Ph.D., Psychiatry Rune Kroken, M.D., Ph.D. Psychiatry Jan Øystein Berle, M.D. Ph.D. Psychiatry Else-Marie Løberg, Ph.D., Clin. Psychologist Jill-Kristin Bjarke, Psychiatric Nurse, Hugo Jørgensen, Prof. emeritus, Psychiatry (consultant)

