Attention-deficit/hyperactivity disorder and the link to violence

5th Bergen International Conference on Forensic Psychiatry

Niklas Långström Senior analyst, Swedish National Board of Forensic Medicine Affiliated Researcher, Karolinska institutet, Sweden Visiting professor, Dept Forensic Psychiatry, Aarhus University, Denmark

Attention-deficit/ hyperactivity disorder (ADHD)

The construct

REVIEW

Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan

Barbara Franke^{a,b,*}, Giorgia Michelini^c, Philip Asherson^c, Tobias Banaschewski^d, Andrea Bilbow^{e,f}, Jan K. Buitelaar^g, Bru Cormand^{h,i,j,k}, Stephen V. Faraone^{l,m}, Ylva Ginsberg^{n,o}, Jan Haavik^{m,p}, Jonna Kuntsi^c, Henrik Larsson^{n,o}, Klaus-Peter Lesch^{q,r,s}, J. Antoni Ramos-Quiroga^{t,u,v,w}, János M. Réthelyi^{x,y}, Marta Ribases^{t,u,v}, Andreas Reif^z

^a Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands

^bDepartment of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands

^c King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK

^d Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

^e Attention Deficit Disorder Information and Support Service (ADDISS), Edgware, UK

^f ADHD-Europe, Brussels, Belgium

⁸ Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands

^h Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain

¹Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain

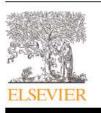
¹ Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain

^k Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain

¹Departments of Psychiatry and of Neuroscience and Physiology, State University of New York Upstate Medical University, New York, USA

^m K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway

ⁿDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

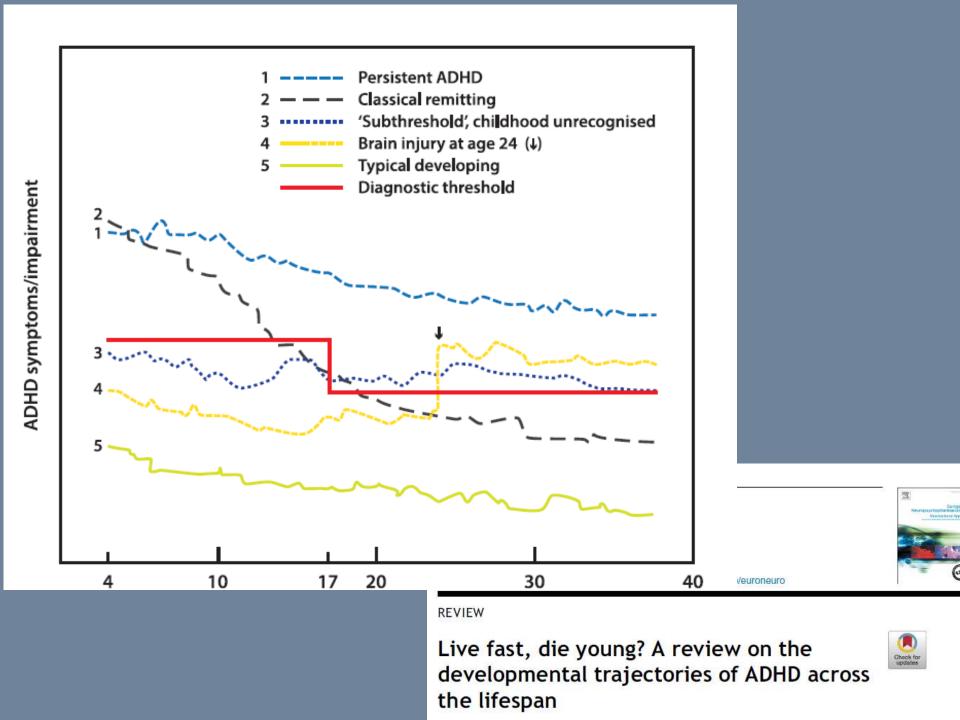

Attention-deficit/hyperactivity disorder (ADHD) most common neurodevelopmental disorder in childhood

Highly heritable

Substantial proportion do not remit in puberty, but persists into adulthood

Extensive comorbidity

Course and symptoms of ADHD, and comorbidities, may change over time, and even childhood onset recently been questioned European Neuropsychopharmacology (2018) 28, 1059-1088



www.elsevier.com/locate/euroneuro

REVIEW

Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan

Barbara Franke^{a,b,*}, Giorgia Michelini^c, Philip Asherson^c, Tobias Banaschewski^d, Andrea Bilbow^{e,f}, Jan K. Buitelaar^g, Bru Cormand^{h,i,j,k}, Stephen V. Faraone^{l,m}, Ylva Ginsberg^{n,o}, Jan Haavik^{m,p}, Jonna Kuntsi^c, Henrik Larsson^{n,o}, Klaus-Peter Lesch^{q,r,s}, J. Antoni Ramos-Quiroga^{t,u,v,w}, János M. Réthelyi^{x,y}, Marta Ribases^{t,u,v}, Andreas Reif^z

ARTICLE

Do borderline personality disorder and attention-deficit/ hyperactivity disorder co-aggregate in families? A population-based study of 2 million Swedes

Ralf Kuja-Halkola ¹ · Kristina Lind Juto¹ · Charlotte Skoglund² · Christian Rück² · David Mataix-Cols² · Ana Pérez-Vigil² · Johan Larsson² · Clara Hellner² · Niklas Långström^{1,3} · Predrag Petrovic⁴ · Paul Lichtenstein¹ · Henrik Larsson^{1,5}

Received: 7 February 2018 / Revised: 6 August 2018 / Accepted: 8 August 2018 © The Author(s) 2018. This article is published with open access

Abstract

Large-scale family studies on the co-occurrence of attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) are lacking. Thus, we aimed to estimate the co-occurrence and familial co-aggregation of clinically ascertained ADHD and BPD diagnoses using the entire Swedish population. In a register-based cohort design we included individuals born in Sweden 1979–2001, and identified their diagnoses during 1997–2013; in total, 2,113,902 individuals were included in the analyses. We obtained clinical diagnoses of ADHD and BPD from inpatient and outpatient care. Individuals with an ADHD diagnosis had an adjusted (for birth year, sex, and birth order) odds ratio (aOR) of 19.4 (95% confidence interval [95% CI]=18.6–20.4) of also having a BPD diagnosis, compared to individuals not diagnosed with ADHD. Having a sibling with ADHD also increased the risk for BPD (monozygotic twins, aOR = 11.2, 95% CI = 3.0–42.2; full siblings, aOR = 2.8, 95% CI = 2.6–3.1; maternal half-siblings, aOR = 1.4, 95% CI = 1.2–1.7; paternal half-siblings, aOR = 1.5, 95% CI = 1.3–1.7). Cousins also had an increased risk. The strength of the association between ADHD and BPD was similar in females and males, and full siblings showed similar increased risks regardless of sex. Among both males and females, ADHD and BPD co-occur within individuals and co-aggregate in relatives; the pattern suggests shared genetic factors and no robust evidence for etiologic sex differences was found. Clinicians should be aware of increased risks for BPD in individuals with ADHD and their relatives, and vice versa.

Co-occurence Co-morbidity

ADHD is not alone out there

Family aggregation, twin and molecular genetic (SNPs and GWAS-based polygenic risk scores [PRS]) studies...

Robustly find ADHD associations with co-occurring traits and disorders (and vice versa) at least moderately explained by genetic influences (i.e. many *pleiotropic* gene variations [alleles] each with small effect)

Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee S., Ripke S., Neale B., Faraone S.V., Purcell S. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. *Nature Genetics* 2013;45:984-994

Pettersson E., Larsson H., & Lichtenstein P. Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. *Molecular Psychiatry* 2016;21:717-721.

Du Rietz E., Coleman J., Glanville K., Choi S.W., O'Reilly P.F., & Kuntsi J. Association of polygenic risk for Attention-Deficit/Hyperactivity Disorder with cooccurring traits and disorders. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging* 2018;3:635-643.

ARTICLE

Open Access

A polygenic *p* factor for major psychiatric disorders

Saskia Selzam¹, Jonathan R. I. Coleman ¹², Avshalom Caspi^{1,3,4,5}, Terrie E. Moffitt^{1,3,4,5} and Robert Plomin¹

Abstract

It has recently been proposed that a single dimension, called the *p* factor, can capture a person's liability to mental disorder. Relevant to the *p* hypothesis, recent genetic research has found surprisingly high genetic correlations between pairs of psychiatric disorders. Here, for the first time, we compare genetic correlations from different methods and examine their support for a genetic *p* factor. We tested the hypothesis of a genetic *p* factor by applying principal component analysis to matrices of genetic correlations between major psychiatric disorders estimated by three methods—family study, genome-wide complex trait analysis, and linkage-disequilibrium score regression—and on a matrix of polygenic score correlations constructed for each individual in a UK-representative sample of 7 026 unrelated individuals. All disorders loaded positively on a first unrotated principal component, which accounted for 57, 43, 35, and 22% of the variance respectively for the four methods. Our results showed that all four methods provided strong support for a genetic *p* factor that represents the pinnacle of the hierarchical genetic architecture of psychopathology.

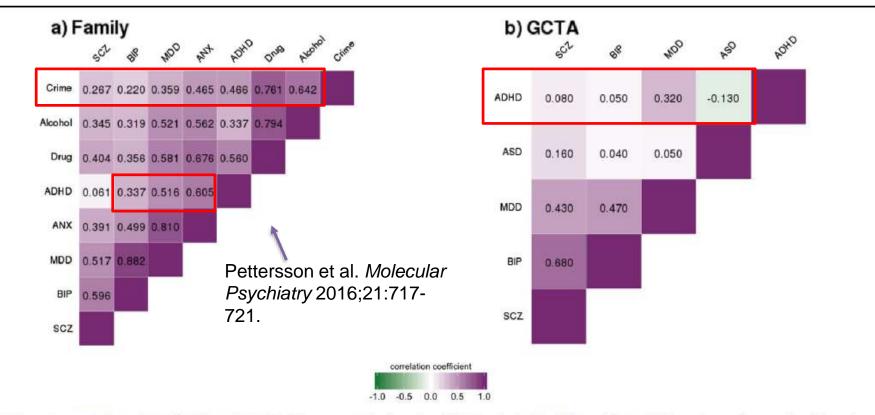


Fig. 1 Genetic correlations from family analysis (a), Genome-wide Complex Trait Analysis (b), Linkage-Disequilibrium Score Regression (c) and Genome-wide Polygenic Score (d) analysis. Values represent genetic correlations for (a), (b) and (c) and Pearson's correlation coefficients for (d). SCZ Schizophrenia, *BIP* Bipolar Disorder, *MDD* Major Depressive Disorder, *ASD* Autism Spectrum Disorder, *ADHD* Attention-Deficit/Hyperactivity Disorder, *ANX* Anxiety, *OCD* Obsessive-Compulsive Disorder, *AN* Anorexia Nervosa, *PTSD* Post-Traumatic Stress Disorder; Drug = Drug Abuse; Alcohol = Alcohol Abuse; Crime = Convictions of Violent Crimes

Selzam et al. Translational Psychiatry (2018)8:205 DOI 10.1038/s41398-018-0217-4	Translational Psychiatry
ARTICLE	Open Access
A polygenic <i>p</i> factor for ma disorders	jor psychiatric

Fig. 1 Genetic correlations from family analysis (a), Genome-wide Complex Trait Analysis (b), Linkage-Disequilibrium Score Regression (c) and Genome-wide Polygenic Score (d) analysis. Values represent genetic correlations for (a), (b) and (c) and Pearson's correlation coefficients for (d). SCZ Schizophrenia, *BIP* Bipolar Disorder, *MDD* Major Depressive Disorder, *ASD* Autism Spectrum Disorder, *ADHD* Attention-Deficit/Hyperactivity Disorder, *ANX* Anxiety, *OCD* Obsessive-Compulsive Disorder, *AN* Anorexia Nervosa, *PTSD* Post-Traumatic Stress Disorder; Drug = Drug Abuse; Alcohol = Alcohol Abuse; Crime = Convictions of Violent Crimes

Selzam et al. Translational Psychiatry (2018)8:205 DOI 10.1038/s41398-018-0217-4	Translational Psychiatry
ARTICLE	Open Access
A polygenic <i>p</i> factor for disorders	major psychiatric
	Carpil ³⁴⁵ Toxia E. Mafftt ¹³⁴⁵ and Pahart Diamin ¹

Principal component analysis to matrices of genetic correlations between major psychiatric disorders estimated by family study, genome-wide complex trait analysis, and linkage-disequilibrium score regression and polygenic score correlations

All tested disorders loaded positively on a first unrotated principal component, accounting for 57, 43, 35 and 22% of variance, respectively, for the four methods

Conluded all four methods provided strong support for a *genetic p factor* that represents the pinnacle of the hierarchical genetic architecture of psychopathology

Selzam et al. Translational Psychiatry (2018)8:205 DOI 10.1038/s41398-018-0217-4

Translational Psychiatry

ARTICLE

Open Access

A polygenic *p* factor for major psychiatric disorders

Saskia Selzam¹, Jonathan R. I. Coleman ¹², Avshalom Caspi^{1,3,4,5}, Terrie E. Moffitt^{1,3,4,5} and Robert Plomin¹

Abstract

It has recently been proposed that a single dimension, called the p factor, can capture a person's liability to mental disorder. Relevant to the p hypothesis, recent genetic research has found surprisingly high genetic correlations

ADHD

Effective treatments for core symptoms exist

 Table 1
 Reported effect sizes (standardised mean difference) from meta-analysis for studies of treatment efficacy for ADHD core symptoms in childhood and adulthood.

 Treatment and age-group
 Treatment type
 Effect size
 Reference

 Childhood: pharmacological
 Methylphenidate
 0.72
 Faraone and Buitelaar (2010)

Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis

Samuele Cortese, Nicoletta Adamo, Cinzia Del Giovane, Christina Mohr-Jensen, Adrian J Hayes, Sara Carucci, Lauren Z Atkinson, Luca Tessari, Tobias Banaschewski, David Coghill, Chris Hollis, Emily Simonoff, Alessandro Zuddas, Corrado Barbui, Marianna Purgato, Hans-Christoph Steinhausen, Farhad Shokraneh, Jun Xia, Andrea Cipriani

Summary

Background The benefits and safety of medications for attention-deficit hyperactivity disorder (ADHD) remain controversial, and guidelines are inconsistent on which medications are preferred across different age groups. We aimed to estimate the comparative efficacy and tolerability of oral medications for ADHD in children, adolescents, and adults

			et al. (2015)
Adulthood: pharmacological treatment	Methylphenidate	0.42-0.72	Castells et al. (2011b; Epstein et al. (2014
	Amphetamines	0.72-1.07	Castells et al. (2011a); Fridman et al. (2015)
	Atomoxetine	0.38-0.60	Asherson et al. (2014); Fridman et al. (2015)
Adulthood: non-pharmacological treatment	Cognitive-behavioural therapy	0.43-1.0	Jensen et al. (2016); Knouse et al. (2017); Young et al. (2016)
	Mindfulness-based therapies	0.53-0.66	Cairncross and Miller (2016)

REVIEW

Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan

See antes

5:727-38 Published Online

August 7, 2018

Lancet Psychiatry 2018;

on

dson

Treatment and age-group	Treatment type	Effect size	Reference
Childhood: pharmacological treatment	Methylphenidate	0.72	Faraone and Buitelaar (2010)
	Amphetamines	0.99	Faraone and Buitelaar (2010)
	Atomoxetine	0.64	Schwartz and Correll (2014)
	Guanfacine	0.63	Hirota et al. (2014)
	Clonidine	0.44	Hirota et al. (2014)
Childhood: non-pharmacological treatment	Omega-3	0.16	Sonuga-Barke et al. (2013)
	Diets	0.42	Sonuga-Barke et al. (2013)
Comparative efficacy and tolerability	of medications for	0.21	Hodgson et al. (2014)
attention-deficit hyperactivity disor		0.09	Hodgson et al. (2014)
adolescents, and adults: a systemati meta-analysis		-0.02-0.20	Cortese et al. (2015); Hodgson et al. (2014)
Semark Control, Neolitta Adonu, Otale Dif General: Christine Mole Jenur, Advier,		-0.03	Hodgson et al. (2014)
Tobles Benarchevela, Devid Coglell, Chris Halls, Ernily Straverff, Alessandro Zuddas, Co Wars-Christoph Statishusser, Farhad Shatmineh, Am Xia, Andrea Cipriani	rrado Barlas, Mantansa Purgatia	-0.51	Hodgson et al. (2014)
Summary Background The benefits and safety of medications for attentions-	leficit hyperactivity disorder (ADHD) remain (aver-Pastney301)	- <mark>5.9</mark> 1	Hodgson et al. (2014)
controversial, and guidefines are inconsistent on which medication We aimed to estimate the comparative efficacy and tolerability of oral n and adults.	is are preferred across different age groups. 1721-38	-0.26-0.16	Hodgson et al. (2014); Richardson et al. (2015)
Adulthood: pharmacological	Methylphenidate	0.42-0.72	Castells et al. (2011b; Epstein
treatment	111		et al. (2014
	Amphetamines	0.72-1.07	Castells et al. (2011a); Fridman et al. (2015)
	Atomoxetine	0.38-0.60	Asherson et al. (2014); Fridman et al. (2015)
Adulthood: non-pharmacological treatment	Cognitive-behavioural therapy	0.43-1.0	Jensen et al. (2016); Knouse et al. (2017); Young et al. (2016)
	Mindfulness-based therapies	0.53-0.66	Cairncross and Miller (2016)

 Table 1
 Reported effect sizes (standardised mean difference) from meta-analysis for studies of treatment efficacy for ADHD core symptoms in childhood and adulthood.

REVIEW

Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan

Check for updates

Prevalence among law-breakers/ violent individuals

M The health of prisoners

Prevalence of mental disorders in prisoners in western countries in comparison with the general population (adapted from Fazel & Baillargeon, 2011)

	Male prisoners (%)	Male general population estimate (%)	Female prisoners (%)	Female general population estimate (%)
Any personality disorder ¹	65%	5–10%	42%	5–10%
Antisocial personality disorder ¹	47%	5–7%	21%	0.5–1%
ADHD⁵	25-30%	3-5%	25-30%	3-5%
Alcohol misuse/dependence ²	18–30%	14–16%	10–24%	4–5%
Drug misuse/dependence ²	10–48%	4–6%	30–60%	2–3%
Depression ¹	10%	2–4%	12%	5–7%
Post-traumatic disorder ⁴	4–21%	2%	10–21%	3%
Psychosis ¹	4%	1%	4%	1%
Intellectual disability ³	0.5–1.5%	1%	0.5–1.5%	1%

*General population estimates are based on individuals of similar ages where possible.

1) Fazel S, Danesh J. Serious mental disorder in 23 000 prisoners: a systematic review of 62 surveys. Lancet 2002;359:545–50. Fazel S & Seewald K. Br J Psychiatry 2012.

2) Fazel S, Bains P, Doll H. Substance abuse and dependence in prisoners: a systematic review. Addiction 2006;101:181–91.

3) Fazel S, Xenitidis K, Powell J. The prevalence of intellectual disabilities among 12,000 prisoners—a systematic review. Int J Law Psychiatry 2008;31:369–73.

4) Goff A, Rose S, Purves D. Does PTSD occur in sentenced prison populations? A systematic literature review. Crim Behav Ment Health 2007;17:152–62.

5) Young S, Moss D, Sedgwick O, Fridman M, Hodgkins P. A meta-analysis of the prevalence of attention deficit hyperactivity disorder in incarcerated populations. Psychol Med 2015; 45:247–58. Baggio S, Fructuoso A, Guimaraes M, Fois E, Golay D, Heller P, et al. Prevalence of Attention Deficit Hyperactivity Disorder in detention settings: A systematic review and meta-analysis. Front Psychiatry 2018;9.

J Autism Dev Disord (2014) 44:2707–2716 DOI 10.1007/s10803-013-1873-0

ORIGINAL PAPER

Childhood Neurodevelopmental Disorders and Violent Criminality: A Sibling Control Study

Sebastian Lundström · Mats Forsman · Henrik Larsson · Nora Kerekes · Eva Serlachius · Niklas Långström · Paul Lichtenstein

Violent crime conviction among 3000+ CAP patients diagnosed in greater Stockholm area vs. matched non-CAP controls. All born 1984-1994, followed to 2009 (ages 15-25)

J Autism Dev Disord

Table 3 Odds ratios with 95 % confidence intervals, for violent offending in different neurodevelopmental disorders in a Swedish prospective study of four childhood neurodevelopmental disorders and risk of violent criminality

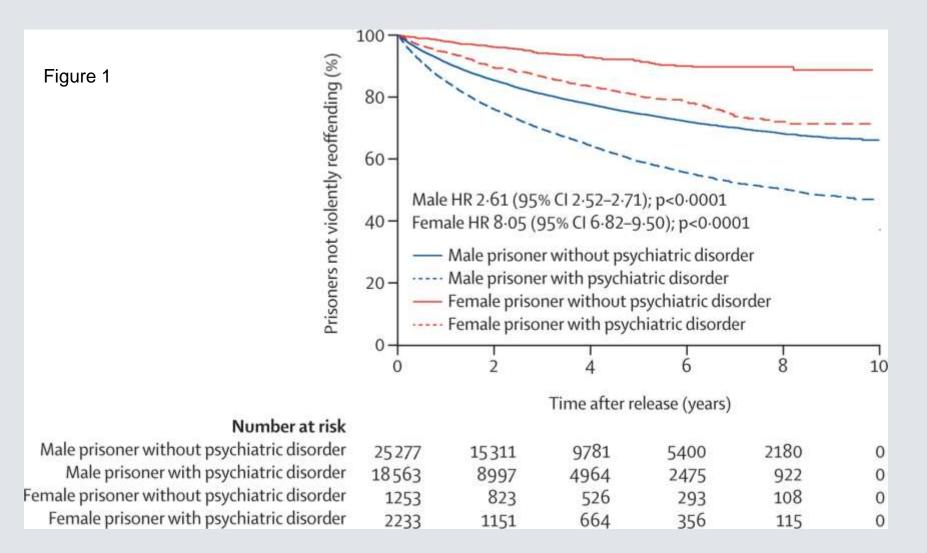
	ADHD	ASD	TD	OCD
Unadjusted model	4.6 (3.7-5.7)**	1.3 (0.9–2.0)	2.2 (1.1-4.4)*	0.9 (0.5–1.7)
Adjusted for confounders ^a	4.3 (3.4-3.6)**	1.3 (0.8-2.1)	3.0 (1.5-6.4)**	1.3 (0.7-2.4)
Adjusted for CD and ODD ^b	3.7 (2.9-4.9)**	1.3 (0.8-2.1)	3.1 (1.5-6.7)**	1.2 (0.6-2.2)
Fully adjusted ^c	2.7 (2.0-3.8)**	1.1 (0.6–1.9)	3.2 (1.4–7.5)**	0.7 (0.3-1.5)

* p < .05, ** bolded figures are significant p < .01

^a Adjusted for parental income and parental education

^b Adjusted for parental income, parental education, ODD, and CD

^c Adjusted for parental income, parental education, ODD, CD, schizophrenia, bipolar disorder, non-organic psychosis, substance abuse/ dependence, and missing grades


Lundström S., Forsman M., Larsson H., Kerekes N., Serlachius E., Långström N., Lichtenstein P. Childhood neurodevelopmental disorders and violent criminality: A sibling control study. *J Autism Dev Disord*, 2014. Psychiatric disorders and violent reoffending: a national cohort study of convicted prisoners in Sweden.

Methods

Longitudinal cohort study of 47 326 individuals imprisoned since Jan 1, 2000, and released before Dec 31, 2009, in Sweden

Diagnosed psychiatric disorders from both inpatient and outpatient registers, and sociodemographic and criminological factors from other population-based registers

Chang, Larsson, Lichtenstein, & Fazel. Lancet Psychiatry. 2015 Sep 2

Chang Z, Larsson H, Lichtenstein P, & Fazel S. Psychiatric disorders and violent reoffending: a national cohort study of convicted prisoners in Sweden *Lancet Psychiatry.* 2015 Sep 2.

	Model 1*	Model 2†	Model 3‡
Men			
Alcohol use disorder	2·14 (2·05-2·24)	1.63 (1.56-1.71)	1.45 (1.38-1.53)
Drug use disorder	2.13 (2.05-2.22)	1.65 (1.58-1.72)	1·52 (1·45-1·59)
Personality disorder	2.29 (2.14-2.45)	1.64 (1.53-1.76)	1·30 (1·21–1·40)
Attention-deficit hyperactivity disorder	2.22 (1.89-2.61)	1·56 (1·31-1·85)	1.31 (1.10-1.55)
Other developmental or childhood disorder	1.82 (1.65-2.01)	1·46 (1·32-1·61)	1.33 (1.20-1.47)
Schizophrenia spectrum disorders	2.06 (1.87-2.26)	1.51 (1.37-1.67)	1.20 (1.09–1.33)
Bipolar disorder	1.96 (1.50-2.58)	1.75 (1.32-2.32)	1.50 (1.13-1.99)
Depression	1·41 (1·30–1·54)	1.28 (1.18-1.40)	1.09 (1.00-1.18)
Anxiety disorder	1·41 (1·32–1·51)	1·23 (1·14–1·32)	1.09 (1.01-1.17)
Women			
Alcohol use disorder	2.65 (2.15-3.26)	2.08 (1.66-2.60)	1.84 (1.46-2.32)
Drug use disorder	2.59 (2.10-3.20)	1·84 (1·46-2·30)	1.58 (1.26-2.00)
Personality disorder	2.57 (1.99-3.33)	1.66 (1.27-2.18)	1.27 (0.96-1.68)
Attention-deficit hyperactivity disorder	2·01 (0·95-4·25)	1.53 (0.72-3.27)	1.20 (0.56-2.57)
Other developmental or childhood disorder	1·84 (1·29–2·64)	1.20 (0.82-1.76)	1·04 (0·70–1·53)
Schizophrenia spectrum disorders	1.75 (1.11-2.74)	1.04 (0.64-1.69)	0.74 (0.45-1.20)
Bipolar disorder	2.84 (1.06-7.65)	1.81 (0.67-4.91)	1.35 (0.49-3.68)
Depression	1.49 (1.11-2.00)	1.36 (1.00-1.86)	1.16 (0.85-1.59)
Anxiety disorder	1.40 (1.07-1.83)	1.21 (0.92-1.60)	1.07 (0.81-1.41)

Data are hazard ratio (95% CI). *Adjusted for age and immigration status. †Adjusted for age, immigration status, and sociodemographic and criminological covariates. ‡Adjusted for age, immigration status, sociodemographic and criminological covariates, and alcohol and drug use disorders.

Table 3: Association between individual psychiatric disorders and violent crime reoffending

Chang, Larsson, Lichtenstein, & Fazel. Psychiatric disorders and violent reoffending: a national cohort study of convicted prisoners in Sweden. *Lancet Psychiatry.* 2015 Sep 2

Why links between (some) neurodevelopmental psychiatric conditions & antisocial behavior/ violence?

Neurodevelopmental symptom dimensions that influence (violent) criminal propensity

6%

13.6%

0

34.1% 34.1%

10

20

1%

50

0.1%

30

Emotional

lability

0

Impulsivity/

sensation

seeking

2.1%

Cognitive impairment: Social

Cognitive

impairment:

General

0,1% 2,1%

-30

2.1%

0.1%

13.60

-50

ADHD

Do treatments also affect violence risk/recidivism?

And, for practical and ethical reasons, can long-term effectiveness for pharmacological and psychological treatments be ascertained from randomized controlled trials?

ADHD treatment prevents violence?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Medication for Attention Deficit– Hyperactivity Disorder and Criminality

Paul Lichtenstein, Ph.D., Linda Halldner, M.D., Ph.D., Johan Zetterqvist, M.Ed., Arvid Sjölander, Ph.D., Eva Serlachius, M.D., Ph.D., Seena Fazel, M.B., Ch.B., M.D., Niklas Långström, M.D., Ph.D., and Henrik Larsson, M.D., Ph.D.

- ✓ 25 000 individuals diagnosed with ADHD studied in withinindividual analyses
- Periods when person used prescribed medication compared with periods when same person did not use same medication

RESULTS

Table 2. Hazard Ratio for Conviction for Any Crime during a Period of Treatment with an ADHD Medication, as Compared with a Nontreatment Period (2006–2009).*

Sex	No. of Patients	No. of Crimes	Hazard Ratio (95% CI)			
			Cox Regression	Stratified Cox Regression		
Men	16,087	23,693	0.70 (0.66–0.75)	0.68 (0.63-0.73)		
Women	9,569	4,112	0.78 (0.68–0.90)	0.59 (0.50–0.70)		

RESULTS continued...

Table 4. Sensitivity Analyses among Men with ADHD, According to Types of Cohort, Medication, and Criminal Outcome (2006–2009).*

Types of Cohort, Medication, and Criminal Outcome	No. of Patients in Cohort	No. of Crimes	Hazard Ratio (95% CI)
ADHD diagnosed in National Patient Register	16,087		
Stimulant drug and any criminal conviction		23,693	0.66 (0.61-0.71)
Nonstimulant drug and any criminal conviction†		23,693	0.76 (0.63–0.91)
ADHD medication			
Violent crime		3,985	0.54 (0.44–0.67)
Less severe crime‡		17,421	0.67 (0.62–0.73)
Drug-related crime		8,502	0.63 (0.55–0.71)
No coexisting disorder and any criminal conviction§		5,723	0.77 (0.66–0.90)
Suspected of crime		55,953	0.81 (0.77–0.84)
SSRI medication and any criminal conviction		23,693	1.04 (0.93–1.17)
Prescribed ADHD medication and any criminal conviction	17,141	27,416	0.64 (0.60-0.68)
Pastill Register, use of ADHD medication, and any criminal conviction	1,090	995	0.83 (0.54–1.29)

Association between prescription of major psychotropic medications and violent reoffending after prison release

Zheng Chang, Paul Lichtenstein, Niklas Långström, Henrik Larsson, & Seena Fazel. Association Between Prescription of Major Psychotropic Medications and Violent Reoffending After Prison Release. JAMA. 2016;316(17):1798-1807.

JAMA, 2016: Association between prescription of major psychotropic medications and violent reoffending after prison release

	Medicated P	eriods		Nonmedicate	ed Periods		Risk Difference in No.				
Medication	Individuals, No.	Person- Years	Violent Reoffenses, No.	, Individuals, No.	Person- Years	Violent Reoffenses, No.	of Violent Reoffenses/	Hazard Ratio (95% CI)		1.1	
Antipsychotics	2085	1596	100	2767	11026	1044	-39.7 (-57.7 to -11.3)	0.58 (0.39 to 0.88)		-1	/
Antidepressants	5660	3846	224	7421	31135	2038	5.9 (-11.1 to 28.1)	1.09 (0.83 to 1.43)	l.		/
Psychostimulants	1202	1648	94	1352	4553	513	-42.8 (-67.6 to -2.2)	0.62 (0.40 to 0.98)		_	
Drugs used in addictive disorders	2077	1168	46	3055	15725	1103	-36.4 (-54.0 to -2.1)	0.48 (0.23 to 0.97)			
Antiepileptics	2235	1976	152	2736	10750	800	10.4 (-15.6 to 48.3)	1.14 (0.79 to 1.65)			
Adrenergic inhalants ^a	2387	1291	38	2878	12992	586	-7.6 (-17.1 to 55.4)	1.17 (0.62 to 2.23)	-		5
								(0.2 Hazard Rati	1.0	3.0 I)

Zheng Chang, Paul Lichtenstein, Niklas Långström, Henrik Larsson, & Seena Fazel Association Between Prescription of Major Psychotropic Medications and Violent Reoffending After Prison Release. JAMA. 2016;316(17):1798-1807. Association between prescription of major psychotropic medications and violent reoffending after prison release

Zheng Chang, Paul Lichtenstein, Niklas Långström, Henrik Larsson, & Seena Fazel. Association Between Prescription of Major Psychotropic Medications and Violent Reoffending After Prison Release. JAMA. 2016;316(17):1798-1807 Table 4. Psychotropic Medications and Criminal Reoffending in Released Prisoners by Diagnostic Subgroups, Severity of Outcome, and Duration of Follow-up

		Medicated P	eriods		Nonmedicate	d Periods		Risk Difference in No. of Violent Reoffenses/1000	
	Outcome	Individuals,	Person-		Individuals,	Person-	-	Person-Years	Hazard Ratio
Cohort Antipsychotics	Event	No.	Years	Events, No.	No.	Years	Events, No.	(95% CI)	(95% CI)
Individuals diagnosed as having SSD or BD	Violent crime	361	494	39	759	2646	331	-40.7 (-65.7 to -5.2)	0.67 (0.47 to 0.96
Individuals diagnosed as having SUD	Violent crime	1179	936	83	6415	24 505	2214	-2.1 (-20.0 to 20.3)	0.98 (0.78 to 1.22
Full cohort	Severe interpersonal violence	2063	1590	66	2727	10 942	742	-19.1 (-30.2 to -4.7)	0.72 (0.55 to 0.93
Full cohort	Any crime	2063	1590	662	2727	10 942	6860	-96.5 (-138.0 to -51.4)	0.85 (0.78 to 0.92
Individuals treated before release	Violent crime	621	747	58	1285	4189	434	-27.1 (-46.2 to -1.5)	0.74 (0.55 to 0.99
Individuals treated only after release	Violent crime	1442	843	42	1442	6753	602	-33.9 (-49.4 to -12.4)	0.62 (0.45 to 0.86
Individuals with a violent index crime	Violent crime	951	796	68	1264	4907	669	-35.9 (~59.1 to ~5.9)	0.74 (0.57 to 0.96
Individuals with a nonviolent index crime	Violent crime	1112	794	32	1463	6034	367	-10.5 (-25.9 to 11.6)	0.83 (0.57 to 1.19
Full cohort with extended follow-up*	Violent crime	2649	2023	100	3253	15 418	1344	-25.0 (-37.0 to -10.1)	0.71 (0.58 to 0.88
Psychostimulants									1000000-0000
Individuals diagnosed as having ADHD	Violent crime	306	450	35	624	1593	285	-57.3 (-94.8 to -3.2)	0.68 (0.47 to 0.98
Full cohort	Severe interpersonal violence	1197	1647	71	1343	4538	381	-23.6 (-37.6 to -5.6)	0.72 (0.55 to 0.93
Full cohort	Any crime	1197	1647	699	1343	4538	4047	-258.4 (-308.7 to -203.8)	0.71 (0.65 to 0.77
Individuals treated before release	Violent crime	273	438	37	419	906	164	-75.6 (-108.3 to -28.1)	0.58 (0.40 to 0.84
Individuals treated only after release	Violent crime	924	1209	57	924	3630	349	-45.2 (-59.1 to -26.0)	0.53 (0.38 to 0.73
Individuals with a violent index crime	Violent crime	524	697	57	600	1981	297	-39.7 (~68.0 to =1.8)	0.73 (0.55 to 0.99
Individuals with a nonviolent index crime	Violent crime	673	950	37	743	2557	216	-29.6 (-46.2 to -5.6)	0.65 (0.45 to 0.93
Full cohort with extended follow-up*	Violent crime	1729	2348	94	1858	7481	813	-41.2 (-54.4 to -24.9)	0.62 (0.50 to 0.77
Drugs Used in Addictive	e Disorders								
Individuals diagnosed as having SUD	Violent crime	1534	945	37	6417	24 496	2260	-32.1 (-49.0 to -8.5)	0.65 (0.47 to 0.91
Individuals diagnosed as having SSD or BD	Violent crime	157	82	1	762	3059	369	-104.5 (-118.4 to -5.7)	0.13 (0.02 to 0.95
Full-cohort	Severe interpersonal violence	2590	1164	31	3499	15 565	750	-18.3 (-27.5 to -5.0)	0.62 (0.43 to 0.90
Full cohort	Any crime	2590	1164	658	3499	15 565	7270	6.5 (-30.9 to 47.1)	1.01 (0.93 to 1.10
Individuals treated before release	Violent crime	677	438	14	1586	5612	442	-42.9 (-58.1 to -16.4)	0.46 (0.26 to 0.79
Individuals treated only after release	Violent crime	1913	725	32	1913	9953	656	-22.9 (-36.1 to -3.8)	0.65 (0.45 to 0.94
Individuals with a violent index crime	Violent crime	937	301	17	1286	5742	660	-51.2 (-75.6 to -11.6)	0.55 (0.34 to 0.90
Individuals with a nonviolent index crime	Violent crime	1653	862	29	2213	9023	438	-11.4 (-22.0 to 4.2)	0.74 (0.51 to 1.09
Full cohort with extended follow-up*	Violent crime	3162	1611	46	4000	20190	1344	-26.1 (-37.3 to -10.4)	0.61 (0.44 to 0.84

ADHD risk factor for the development of violent crime

(Young et al 2003; 2009; Satterfield et al., 2007; Mannuzza, Klein, & Moulton, 2008; Langley et al., 2010; Mordre, Groholt, Kjelsberg, Sandstad, & Myhre, 2011; Lundström et al., 2013; Chang et al., 2015)

- ✓ ADHD common in correctional and forensic psychiatric populations
- Effective treatment for ADHD core symptoms also appears to reduce violent criminality
- → Substantial gains if identification and treatment improved?

Attention-deficit/hyperactivity disorder and the link to violence

Takk for oppmerksomheten (thanks for your attention)!

niklas.langstrom@ki.se